Abstract

Aerobic denitrifiers have the potential to reduce nitrate in polluted water under aerobic conditions. A salt-tolerant aerobic denitrifier was newly isolated and identified as Vibrio spp. AD2 from a marine recirculating aquaculture system, in which denitrification performance was investigated via single-factor experiment, Box-Behnken experiment, and nitrogen balance analysis. Nitrate reductase genes were identified by polymerase chain reaction. Results showed that strain AD2 removed 98.9% of nitrate-nitrogen (NO3--N) with an initial concentration about 100 mg·L-1 in 48 h without nitrite-nitrogen (NO2--N) accumulation. Nitrogen balance indicated that approximately 17.5% of the initial NO3--N was utilized for bacteria synthesis themselves, 4.02% was converted to organic nitrogen, 39.8% was converted to nitrous oxide (N2O), and 31.1% was converted to nitrogen (N2). Response surface methodology experiment showed that the maximum removal of total nitrogen (TN) occurred under the condition of C/N ratio 11.5, shaking speed 127.9 rpm, and temperature 30.8 °C. Sequence amplification indicated that the denitrification genes, napA and nirS, were present in strain AD2. These results indicated that the strain AD2 has potential applications for removing NO3--N from high-salinity (3%) wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call