Abstract

We developed and characterized a new imaging platform for minimally invasive surgical venues, specifically a system to help guide laparoscopic surgeons to visualize biliary anatomy. This platform is a novel combination of a near-infrared hyperspectral imaging system coupled with a conventional surgical laparoscope. Intraoperative tissues are illuminated by optical fibers arranged in a ring around a center-mounted relay lens collecting back-reflected light from tissues to the hyperspectral imaging system. The system consists of a focal plane array (FPA) and a liquid crystal tunable filter, which is continuously tunable in the near-infrared spectral range of 650-1100 nm with the capability of passing light with a mean bandwidth of 6.95 nm, and the FPA is a high-sensitivity back-illuminated, deep depleted charge-coupled device. Placing a standard resolution target 5.1 cm from the distal end of the laparoscope, a typical intraoperative working distance, produced a 7.6-cm-diameter field of view with an optimal spatial resolution of 0.24 mm. In addition, the system's spatial and spectral resolution and its wavelength tuning accuracy are characterized. The spectroscopic images are formatted into a three-dimensional hyperspectral image cube and processed using principle component analysis. The processed images provide contrast based on measured spectra associated with chemically different anatomical structures helping identify the main molecular chromophores inherent to each tissue. The principal component images were found to image swine gallbladder and biliary structures from surrounding tissues, in real time, during cholecystectomy surgery. Furthermore, it is shown that surgeons can interrogate selected image subregions for their molecular composition identifying biliary anatomy during surgery and before any invasive action is undertaken.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.