Abstract

The goal of quality by design (QbD) in cell culture manufacturing is to develop manufacturing processes which deliver products with consistent critical quality attributes (CQAs). QbD approaches can lead to better process understanding through the use of process parameter risk ranking and statistical design of experiments (DOE). The QbD process starts with an analysis of process parameter risk with respect to CQAs and key performance indicators (KPIs). Initial DOE study designs and their factor test ranges are based on the outcomes of the process parameter risk ranking exercises. Initial DOE studies screen factors for significant influences on CQAs as well as characterize responses for process KPIs. In the case study provided here, multifactor process characterization studies using a scale-down model resulted in significant variation in charge heterogeneity of a monoclonal antibody (MAb) as measured by ion-exchange chromatography (IEC). Iterative DOE studies, using both screening and response surface designs, were used to narrow the operating parameter ranges so that charge heterogeneity could be controlled to an acceptable level. The data from the DOE studies were used to predict worst-case conditions, which were then verified by testing at those conditions. Using the approach described here, multivariate process parameter ranges were identified that yield acceptable CQA levels and that still provide operational flexibility for manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.