Abstract
Background The strategy of implementation of the QbD (Quality by design) approach in upstream processing of therapeutic proteins consists of the identification of critical process parameters (CPPs) that have a statistically significant influence on the critical quality attributes (CQAs) of a specific process. By applying the acceptance criteria to the CQAs, proven acceptable ranges (PARs) for the CPPs can be deduced from experimental data. The multidimensional combination of these ranges form the design space and thus assures the quality of the product. The QbD approach according to the ICH guidelines Q8, Q9 and Q10 may be subdivided in the work packages scale down model qualification, risk analysis, process characterization and range studies. The foundation of the QbD approach is represented by the scale down model. Several different scale down criteria were applied and adapted until a satisfactory match of scale down to commercial scale data was achieved. The scale down model is then used to investigate cause effect relationships between process parameters and quality attributes of the production process. Since a standard cell culture process from thawing of the vial up to the final production fermenter can comprise up to 100 process parameters, a risk based approach is helpful to filter the most important ones. Those parameters are then experimentally investigated to verify their criticality for the quality attributes of the process. This approach relies on design of experiment (DoE) to reduce the number of required experiments to a manageable number while maintaining meaningful results. During the range studies, those critical parameters will be investigated with the help of a high resolution DoE matrix in order to be able to reveal possible interactions and higher order effects.
Highlights
The strategy of implementation of the Quality by Design (QbD) (Quality by design) approach in upstream processing of therapeutic proteins consists of the identification of critical process parameters (CPPs) that have a statistically significant influence on the critical quality attributes (CQAs) of a specific process
The way to a design space for an animal cell culture process according to Quality by Design (QbD)
The strategy of implementation of the QbD (Quality by design) approach in upstream processing of therapeutic proteins consists of the identification of critical process parameters (CPPs) that have a statistically significant influence on the critical quality attributes (CQAs) of a specific process
Summary
The strategy of implementation of the QbD (Quality by design) approach in upstream processing of therapeutic proteins consists of the identification of critical process parameters (CPPs) that have a statistically significant influence on the critical quality attributes (CQAs) of a specific process. The way to a design space for an animal cell culture process according to Quality by Design (QbD) The multidimensional combination of these ranges form the design space and assures the quality of the product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.