Abstract

AbstractMicro‐ and millistructured reactors offer significant advantages compared to conventional reactors, e.g., in terms of heat and mass transfer as well as safety. For the substitution of larger batch reactors by continuously operated millireactors a comprehensive reactor characterization is required. The heat transfer and hydrodynamics of the millistructured plate reactor PR37 are studied. The meandering of the process channel and its periodically changing cross‐sectional area increase the heat transfer significantly and lead to a dependency of the heat transfer coefficient on the Reynolds and Prandtl number that is not found in straight channels at Reynolds numbers below 2300.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.