Abstract

Hyperthermostable alkaline lipase from Bacillus sonorensis 4R was purified and characterized. The enzyme production was carried out at 80°C and 9.0 pH in glucose-tween inorganic salt broth under static conditions for 96 h. Lipase was purified by anion exchange chromatography by 12.15 fold with a yield of 1.98%. The molecular weight of lipase was found to be 21.87 KDa by SDS-PAGE. The enzyme activity was optimal at 80°C with t 1/2 of 150 min and at 90°C, 100°C, 110°C, and 120°C; the respective values were 121.59 min, 90.01 min, 70.01 min, and 50 min. The enzyme was highly activated by Mg and t 1/2 values at 80°C were increased from 150 min to 180 min when magnesium and mannitol were added in combination. The activation energy calculated from Arrhenius plot was 31.102 KJ/mol. At 80–120°C, values of ΔH and ΔG were in the range of 28.16–27.83 KJ/mol and 102.79 KJ/mol to 111.66 KJ/mol, respectively. Lipase activity was highest at 9.0 pH and stable for 2 hours at this pH at 80°C. Pretreatment of lipase with MgSO4 and CaSO4 stimulated enzyme activity by 249.94% and 30.2%, respectively. The enzyme activity was greatly reduced by CoCl2, CdCl2, HgCl2, CuCl2, Pb(NO3)2, PMSF, orlistat, oleic acid, iodine, EDTA, and urea.

Highlights

  • Hyperthermophiles are the group of organisms growing at temperatures between 80 and 110∘C

  • Thermozymes isolated from hyperthermophiles growing at the temperature range of 80–110∘C are expected to be more thermostable than their mesophilic correspondents as these organisms are in full harmony with the existing thermal conditions and expected to secrete the enzymes that are completely stable at these temperatures to support their physiological processes [4]

  • The hyperthermoalkalophilic bacteria optimally grow within temperature range of 80–110∘C and are found in all terrestrial and marine hot environments

Read more

Summary

Introduction

Hyperthermophiles are the group of organisms growing at temperatures between 80 and 110∘C. The hyperthermophilic enzymes or thermozymes derived from these organisms exhibit extreme thermostability and highest activity at temperatures above 70∘C [1], some being highly active at and above 110∘C [2]. Thermozymes are extremely stable and active at high temperatures and offer many biotechnological advantages over mesophilic enzymes such as easier purification by heat treatment, higher resistance to chemical denaturants, and reduced risk of microbial contamination [1]. They offer high reaction rates and process yields by lowering viscosity, causing increased diffusion rates and substrate availability and maintaining favorable equilibrium with endothermal reactions [3]. Thermozymes isolated from hyperthermophiles growing at the temperature range of 80–110∘C are expected to be more thermostable than their mesophilic correspondents as these organisms are in full harmony with the existing thermal conditions and expected to secrete the enzymes that are completely stable at these temperatures to support their physiological processes [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call