Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in humans and regulate numerous physiological processes through the activation of heterotrimeric G proteins. GPCR kinases (GRKs) selectively phosphorylate active GPCRs, which promotes arrestin binding, receptor internalization, and initiation of alternative signaling pathways. GRK5 is a representative member of one of three GRK subfamilies that does not need post-translational lipidation or other binding partners to exhibit full activity against GPCRs, rendering it a useful tool for biophysical studies directed at characterizing GRK function. However, recombinant expression of GRK5 has thus far been limited to insect and mammalian systems. Here, we describe the expression of functional GRK5 in E. coli and its purification and biochemical characterization. Bacterially expressed GRK5 is hyperphosphorylated, primarily in regions known to be flexible from prior crystal structures, which slightly decreases its catalytic activity toward receptor substrates. Mutation of a single phosphorylation site, Thr10, restores kinetic parameters to those of GRK5 purified from insect cells. Consequently, bacterial expression will allow for production of GRK5 at a reduced cost and faster pace and would facilitate production of isotopically labeled kinase for NMR studies or for the incorporation of unnatural amino acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.