Abstract

The RNA polymerase gene of human coronavirus (HCV) 229E encodes a large polyprotein that contains domains with motifs characteristic of both papain-like cysteine proteinases and proteinases with homology to the 3C proteinase of picornaviruses. In this study, we have, first, expressed the putative HCV 229E 3C-like proteinase domain as part of a beta-galactosidase fusion protein in Escherichia coli and have shown that the expressed protein has proteolytic activity. The substitution of one amino acid within the predicted proteinase domain (His-3006-->Asp-3006) abolishes, or at least significantly reduces, this activity. Amino-terminal sequence analysis of a purified, 34-kDa cleavage product shows that the bacterial fusion protein is cleaved at the dipeptide Gln-2965-Ala-2966, which is the predicted amino-terminal end of the putative 3C-like proteinase domain. Second, we have confirmed the proteolytic activity of a bacterially expressed polypeptide with the amino acid sequence of the predicted HCV 229E 3C-like proteinase by trans cleavage of an in vitro translated polypeptide encoded within open reading frame 1b of the RNA polymerase gene. Finally, using fusion protein-specific antiserum, we have identified a 34-kDa, 3C-like proteinase polypeptide in HCV 229E-infected MRC-5 cells. This polypeptide can be detected as early as 3 to 5 h postinfection but is present in the infected cell in very low amounts. These data contribute to the characterization of the 3C-like proteinase activity of HCV 229E.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call