Abstract

An acid stable α-galactosidase was produced and purified from mannolytic fungal strain, Penicillium aculeatum APS1. Enzyme was produced using wheat bran and copra cake moistened with corn steep liquor by solid state fermentation. APS1αgal having molecular weight of 65.4 kDa was purified to electrophoretic homogeneity by three phase partitioning and gel permeation chromatography with high enzyme recovery. APS1αgal was found to be maximally active at 55 °C and pH 4.5, having high stability at acidic pH. Thermal stability and thermal inactivation kinetics of APS1αgal were also studied. APS1αgal was found to effectively hydrolyse oligosaccharides as well as polysaccharides having α-1,6 linked galactose. Abolishment of enzyme activity in N-brommosuccinimide revealed an important role of tryptophan residue in catalysis. APS1αgal had shown outstanding tolerance to NaCl and proteases. MALDI-TOF MS/MS analysis indicated that enzyme is probably a member of family GH27. Synergistic interaction between APS1αgal and β-mannanase for hydrolysis of galactomannan was very clear and maximum 2.0° of synergy was found under simultaneous mode of action. This study reports a new source of α-galactosidase with biochemical properties suitable for applications in food and feed industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call