Abstract

We present a combined experimental and theoretical study of beam formation from a cryogenic buffer gas cell. Atoms and molecules are loaded into the cell by laser ablation of a target, and are cooled and swept out of the cell by a flow of cold helium. We study the thermalization and flow dynamics inside the cell and measure how the speed, temperature, divergence and extraction efficiency of the beam are influenced by the helium flow. We use a finite element model to simulate the flow dynamics and use the predictions of this model to interpret our experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.