Abstract

We report the first operation of a commercially available complementary metal-oxide semiconductor operational amplifier, at liquid helium temperature. In addition, we have characterized several factors important to the practical application of such a circuit from room temperature down to 4.2 K. The temperature dependence and measurement techniques for open-loop gain, input offset voltage, input referred noise voltage, and quiescent current are presented. We will discuss our observations of low temperature behavior of the opamp with respect to others’ previous results. This work represents an advancement over earlier studies which only reported opamp operation down to 77 or 30 K with measurements taken only at a limited number of temperatures instead of a broad range. Our data suggest that under special operating conditions the opamps can be effectively used with careful consideration of noise and gain performance. Input offset voltage levels and quiescent current (including power consumption) resemble normal room temperature operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.