Abstract
The fluorescent ATP derivative 2',3'-O-(2,4,6-trinitrocyclohexadienylidine) adenosine 5'-triphosphate (TNP-ATP) binds specifically with enhanced fluorescence to the ATP site of purified eel electroplax sodium-potassium adenosine triphosphatase, (Na,K)-ATPase. A single homogeneous high affinity TNP-ATP binding site with a KD of 0.04 to 0.09 microM at 3 degrees C and 0.2 to 0.7 microM at 21 degrees-25 degrees C was observed in the absence of ligands when binding was measured by fluorescence titration or with [3H]TNP-ATP. ATP and other nucleotides competed with TNP-ATP for binding with KD values similar to those previously determined for binding to the ATP site. Binding stoichiometries determined from Scatchard plot intercepts gave one TNP-ATP site/175,000 g of protein (range: 1.64 X 10(5) to 1.92 X 10(5) when (Na,K)-ATPase protein was determined by quantitative amino acid analysis. The ratio of [3H]ouabain sites to TNP-ATP sites was 0.91. These results are inconsistent with "half-of-sites" binding and suggest that there is one ATP and one ouabain site/alpha beta protomer. (Na,K)-ATPase maintained a high affinity for TNP-ATP regardless of the ligands present. K+ increased the KD for TNP-ATP about 5-fold and Na+ reversed the effect of K+. The effects of Na+, K+, and mg2+ on ATP binding at 3 degrees C were studied fluorimetrically by displacement of TNP-ATP by ATP. The results are consistent with competition between ATP and TNP-ATP for binding at a single site regardless of the metallic ions present. The derived KD values for ATP were : no ligands, 1 microM; 20 mM NaCl, 3-4 microM; 20 mM KCl, 15-19 microM; 20 mM Kcl + 4 mM MgCl2, 70-120 microM. These results suggests that a single ATP site exhibits a high or low affinity for ATP depending on the ligands present, so that high and low affinity ATP sites observed kinetically are interconvertible and do not co-exist independently. We propose that during turnover the affinity for ATP changes more than 100-fold owing to the conformational changes associated with ion binding, translocation, and release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.