Abstract

PurposeThis study aims to explore the enhancement of mechanical properties in epoxy resin composites through the incorporation of graphene nanoparticles, focusing on their impact and wear resistance. It investigates the role of graphene, both treated and untreated, as a reinforcing agent in composites, highlighting the significance of nanoparticle dispersion and surfactant treatment in optimizing mechanical performance.Design/methodology/approachEmploying a novel dispersion technique using a drawing brush, this research contrasts with traditional methods by examining the effects of graphene nanoparticle concentrations treated with surfactants – Polyvinylpyrrolidone (PVP) and Sulphonated Naphthalene Formaldehyde (SNF) – on the mechanical properties of epoxy resin composites. The methodology includes conducting a series of impact and wear tests to assess the influence of graphene reinforcement on the composites' performance.FindingsThe findings reveal a marked enhancement in the composites impact resistance and energy absorption capabilities, which escalate with an increase in graphene content. Additionally, the study demonstrates a significant improvement in wear resistance, attributed to the superior mechanical properties, robust interface adhesion and effective dispersion of graphene. The use of surfactants for graphene treatment is identified as a crucial factor in these advancements, offering profound insights into the development of advanced composite materials for diverse industrial uses.Originality/valueThis study introduces a unique dispersion technique for graphene in epoxy composites, setting it apart from conventional methods. By focusing on the critical role of surfactant treatment in enhancing the mechanical properties of graphene-reinforced composites, it provides a novel insight into the optimization of impact and wear resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.