Abstract

The aim of this work is to characterize the primary structure and physicochemical properties of natural polysaccharides (GLP) and degraded polysaccharides (GLPUD) from Ganoderma lucidum, and evaluate their hypolipidemic and antioxidant activities. The results of particle size distribution and scanning electron microscopy (SEM) showed that Ganoderma lucidum polysaccharides were effectively degraded by ultrasonic method. GLPUD was composed of the same monosaccharide units as GLP but with different molar ratios. Infrared spectra and NMR showed that the primary structure of polysaccharides had not been changed by ultrasonic degradation. Meanwhile, the thermal stability of polysaccharides increased after ultrasonic treatment. After administration by GLP and GLPUD four weeks, body weight, visceral index, atherosclerosis index (AI) and biochemical indicators in serum and in liver were determined. The results showed that GLPUD had stronger hypolipidemic and antioxidant activities than GLP. GLPUD was more effective than the GLP for reducing AI, total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), raising high density lipoprotein (HDL-C) (p < 0.01), reducing malondialdehyde (MDA) content, as well as increasing the glutathione peroxidase (GSH-Px) in mice serum, increasing superoxide dismutase (SOD) activity and reducing MDA content in liver (p < 0.05 or p < 0.01). In addition, the histopathological observations of mice livers showed that GLPUD could significantly improve lipid metabolism disorder in hepatocytes. Thus, GLPUD might be tested as a more effective hypolipidemic drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.