Abstract
Green synthesis of noble metal nanoparticles (NPs) has gained immense significance compared to other metal ions owing to their unique properties. Among them, palladium ‘Pd’ has been in the spotlight for its stable and superior catalytic activity. This work focuses on the synthesis of Pd NPs using the combined aqueous extract (poly-extract) of turmeric (rhizome), neem (leaves), and tulasi (leaves). The bio-synthesized Pd NPs were characterized to study its physicochemical and morphological features using several analytical techniques. Role of Pd NPs as nano-catalysts in the degradation of dyes (1 mg/2 mL stock solution) was evaluated in the presence of a strong reducing agent (sodium borohydride; SBH). In the presence of Pd NPs and SBH, maximum reduction of methylene blue (MB), methyl orange (MO), and rhodamine-B (Rh–B) dyes was observed under 20nullmin (96.55 ± 2.11%), 36nullmin (96.96 ± 2.24%), and 27nullmin (98.12 ± 1.33%), with degradation rate of 0.1789 ± 0.0273 min−1, 0.0926 ± 0.0102 min−1, and 0.1557 ± 0.0200 min−1, respectively. In combination of dyes (MB + MO + Rh–B), maximum degradation was observed under 50nullmin (95.49 ± 2.56%) with degradation rate of 0.0694 ± 0.0087 min−1. It was observed that degradation was following pseudo-first order reaction kinetics. Furthermore, Pd NPs showed good recyclability up to cycle 5 (72.88 ± 2.32%), cycle 9 (69.11 ± 2.19%) and cycle 6 (66.21 ± 2.72%) for MB, MO and Rh–B dyes, respectively. Whereas, up to cycle 4 (74.67 ± 0.66%) during combination of dyes. As Pd NPs showed good recyclability, they can be used for several cycles thus influencing the overall economics of the process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have