Abstract

In 2016, total suspended particles (TSP) and fine particles (PM2.5) were collected near four e-waste recycling parks in a region of Southern China. TSP and PM2.5 levels and composition around these industrial activities were determined and the potential risks for human health due to the exposure to toxic elements contained on fine particles (PM2.5) were evaluated. Levels of TSP and PM2.5 were lower with advanced recycling methods than with small recycling e-waste workshops operating in the sampling region. The main trace elements in particles were Cu, Pb, and Ti, the same as those detected before the transition to advanced dismantling methods in e-waste recycling. Significantly higher levels of Cu, Pb, Sn, Te, Tl and NH4+ in TSP and Cu and Te in PM2.5 were found in e-waste recycling areas than in BG site. Taking Cu as the indicative element emitted from e-waste recycling activities, significant high positive correlations between Cu and W, and Cu and Te were found. These elements are present and can be released from electrical and electronical components during e-waste recycling processes. Exposure to elements for the population living near these e-waste recycling parks means carcinogenic risks above the acceptable threshold (>10-5).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call