Abstract

In the study, a novel ENR-degrading microorganism, Microbacterium proteolyticum GJEE142 was isolated from aquaculture wastewater for the first time. The ENR removal of strain GJEE142 was reliant upon the provision of limited additional carbon source, and was adaptative to low temperature (13 ℃) and high salinity (50‰). The ENR removal process, to which intracellular enzymes made more contributions, was implemented in three proposed pathways. During the removal process, oxidative stress response of strain GJEE142 was activated and the bacterial toxicity of ENR was decreased. Strain GJEE142 could also achieve the synchronous removal of ammonium, nitrite, nitrate and phosphorus with the nitrogen removal pathways of nitrate → nitrite → ammonium → glutamine → glutamate → glutamate metabolism and nitrate → nitrite → gaseous nitrogen. The phosphorus removal was implemented under complete aerobic conditions with the assistance of polyphosphate kinase and exopolyphosphatase. Genomic analysis provided corresponding genetic insights for deciphering removal mechanisms of ENR, nitrogen and phosphorus. ENR, nitrogen and phosphorus in both actual aquaculture wastewater and domestic wastewater could be desirably removed. Desirable adaptation, excellent performance and wide distribution will make strain GJEE142 the hopeful strain in wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.