Abstract

Two facile, robust, and universal methods by which various polymeric quaternary ammonium salts (polyquaterniums (PQs)) can be quantified and characterized using simple potentiometric polymeric membrane polyion-sensitive electrodes as detectors are described. The two methods are (a) direct detection with polycation sensitive membrane electrodes based on the sodium salt of dinonylnaphthalenesulfonate (NaDNNS), and (b) indirect detection using polyanion sensors based on tridodecylmethylammonium chloride (TDMAC) and dextran sulfate (DS) as a titrant to complex the various polyquaternary species (four different PQs: PQ-2, PQ-6, PQ-10, and poly(2-methacryloxyethyltrimethylammonium) chloride (PMETAC)). Direct detection yields information regarding the charge density of the polycationic species. For the titration method, a series of polyanion sensors doped with TDMAC are used to follow a potentiometric titration of a PQ species using a syringe pump to deliver the titrant. This indirect detection method is more reliable and yields limits of detection in the ppm range for the four PQs examined. The titration method is further explored for detecting excess levels of PQ-6, a common flocculating agent for municipal water supply systems, within the purified water emitted by the Ann Arbor, MI, drinking water treatment plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call