Abstract

AbstractIn this work, nanosilica/polypropylene composites containing 1 wt% of silica nanoparticles were prepared by melt mixing in a Thermo Haake internal mixer. Prior compounding, nanosilica was subjected to surface activation using sodium hydroxide (NaOH) solution. The effectiveness of the activation process was evaluated by measuring the amount of hydroxyl groups (OH) on the surface of nanosilica via titration method and supported by FTIR analysis. Two coupling agents namely 3‐aminopropyl triethoxysilane (APTES) and neopentyl (diallyl)oxy, tri(dioctyl) phosphate titanate (Lica 12) were used for surface treatment after activation process. The mechanical properties of polypropylene matrix reinforced with silica nanoparticles were determined by tensile and impact test. Hydroxyl groups on the nanosilica surface played an important role in enhancing the treatment with silane coupling agents. To increase the amount of hydroxyl groups on the nanosilica surface, the optimum concentration of NaOH is 1 mol%. Tensile strength, tensile modulus, and impact strength of nanosilica/PP composites improved with activation process. As the coupling agent is concerned, APTES coupling agent is more pronounced in enhancing the mechanical properties of the composites when compared with Lica 12 coupling agent. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.