Abstract
BackgroundmicroRNAs (miRNAs) are one kind of small non-coding RNAs widely distributed in insects. Many studies have shown that miRNAs play critical roles in development, differentiation, apoptosis, and innate immunity. However, there are a few reports describing miRNAs in Anopheles sinensis, the most common, and one of the dominant malaria mosquito in China. Here, we investigated the global miRNA expression profile across four different developmental stages including embryo, larval, pupal, and adult stages using Illumina Hiseq 2500 sequencing.ResultsIn total, 164 miRNAs were obtained out of 107.46 million raw sequencing reads. 99 of them identified as known miRNAs, and the remaining 65 miRNAs were considered as novel. By analyzing the read counts of miRNAs in all developmental stages, 95 miRNAs showed stage-specific expression (q < 0.01 and |log2 (fold change)| > 1) in consecutive stages, indicating that these miRNAs may be involved in critical physiological activity during development. Sixteen miRNAs were identified to be commonly dysregulated throughout four developmental stages. Many miRNAs showed stage-specific expression, such as asi-miR-2943 was exclusively expressed in the embryo stage, and asi-miR-1891 could not be detected in larval stage. The expression of six selected differentially expressed miRNAs identified by qRT-PCR were consistent with our sequencing results. Furthermore, 5296 and 1902 target genes were identified for the dysregulated 68 known and 27 novel miRNAs respectively by combining miRanda and RNAhybrid prediction. GO annotation and KEGG pathway analysis for the predicted genes of dysregulated miRNAs revealed that they might be involved in a broad range of biological processes related with the development, such as membrane, organic substance transport and several key pathways including protein processing in endoplasmic reticulum, propanoate metabolism and folate biosynthesis. Thirty-two key miRNAs were identified by microRNA-gene network analysis.ConclusionThe present study represents the first global characterization of An. sinensis miRNAs in its four developmental stages. The presence and differential expression of An. sinensis miRNAs imply that such miRNAs may play critical roles in An. sinensis life cycle. A better understanding of the functions of these miRNAs will have great implication for the effective control of vector population and therefore interrupting malaria transmission.
Highlights
MicroRNAs are one kind of small non-coding RNAs widely distributed in insects
Small RNAs sequence of the four libraries We performed small RNA sequencing from eggs, larva, pupa and adult mosquito batches to identify An. sinensis miRNAs expressed during developmental stages
1.99 × 107 (96.71%), 2.85 × 107 (92.81%), 2.91 × 107 (86.06%) and 2.06 × 107 (92.38%) clean reads from An. sinensis egg (ASE), An. sinensis larvae (ASL), An. sinensis pupa (ASP) and An. sinensis adult female (ASA) libraries respectively were utilized for further processing (Table 1)
Summary
MicroRNAs (miRNAs) are one kind of small non-coding RNAs widely distributed in insects. Anopheles sinensis is one of the most important disease vectors in China It is considered as the primary vector of P. vivax malaria due to its wide distribution and high density in central China where several malaria outbreaks occurred in history [1, 2]. An. sinensis goes through four life stages that include egg, larva, pupa and the adult. During these developmental periods, a fine-tuning complex biological process, such as embryogenesis, organ differentiation, and metamorphosis, etc., is completed. MicroRNAs (miRNAs) have become the most popular research topic for its critical role in regulating important biological events at the post-transcriptional level. Mature miRNAs are singlestranded, evolutionarily conserved endogenous small ncRNAs of approximately 22 nucleotides (nt) in length, which could lead to transcriptional decay through translational inhibition, transcript degradation or both [5, 6]
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have