Abstract

In the same context of thermo-mechanical fatigue and high temperature applications of stainless steel, high-frequency vibration fatigue at high temperatures should be considered, in particular for automotive exhaust gas applications. In fact one of the most frequent incidents that can happen on exhaust components is an accumulation of low-cycle thermal fatigue and high-cycle fatigue. The prediction of the lifetime of a structure under such complex thermal and mechanical loading is therefore a constant challenge at high temperature due to the coupling of metallurgical, oxidation or creep effects. In order to better understand in a first approach, the high cycle fatigue of stainless steels at high temperatures, tractioncompression tests were performed on flat specimens at 25Hz, under air and in isothermal conditions from ambient temperature to 850°C. Two different stress ratios, R=-1 and 0.1, are characterized with the objective to assess a multiaxial model for high temperature. Different criteria are used to predict the ruin of a structure under high-cycle fatigue but in general for ambient-around temperatures. In particular, multiaxial and stress-based DangVan criterion is today widely used to evaluate the risk of fatigue cracks initiation and it has been implemented recently in our fatigue life processor Xhaust_Life®. Therefore the Dang Van criterion was identified from the isothermal high cycle fatigue using the 2 stress ratio and its validity is discussed especially for temperatures higher than 500°C where strain rate and creep effects have increasing influence. Results are presented for two ferritic stainless steel grades used in high temperature exhaust applications: K41X (AISI 441, EN 1.4509) and K44X (AISI 444Nb, EN 1.4521).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.