Abstract

The continuous carbon fiber reinforced ZrB2-SiC composite was fabricated successfully via a hybrid technique based on nano ceramic slurry impregnation, polymer infiltration and pyrolysis and low-temperature hot pressing. The Cf/ZrB2-SiC composites exhibited non-brittle fracture modes and the chemical interaction at the fiber/matrix interfaces was effectively inhibited owing to the low sintering temperature. The S2-Cf/ZrB2-SiC composite presented the highest mechanical properties with fracture toughness of 4.47 ± 0.15 MPa m1/2 and the work of fracture of 877 J/m2, which was attributed to the multiple length-scale toughening mechanisms including the macroscopic toughening mechanisms of crack deflection and crack branching, the micro toughening mechanisms of fiber bridging and fiber pull-out. This work presented a novel and effective method to fabricate high-performance continuous carbon fiber reinforced ceramic matrix composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.