Abstract

In the field of bone tissue engineering, silicon (Si) has been found as an essential element for bone growth. However, the use of silicon in bioceramics microspheres remains limited. In this work, different weight percentages (0.8, 1.6, and 2.4 wt %) of silicon was incorporated into hydroxyapatite and fabricated into microspheres. 2.4 wt % of Si incorporated into HAp microspheres (2.4 SiHAp) were found to enhance functional properties of the microspheres which resulted in improved cell viability of human mesenchymal stem cells (hMSCs), demonstrating rapid cell proliferation rates resulting in high cell density accumulated on the surface of the microspheres which in turn permitted better hMSCs differentiation into osteoblasts when validated by bone marker assays (Type I collagen, alkaline phosphatase, osteocalcin, and osteopontin) compared to apatite microspheres of lower wt % of Si incorporated and non-substituted HAp (2.4 SiHAp >1.6 SiHAp >0.8 SiHAp > HAp). SEM images displayed the densest cell population on 2.4 SiHAp surfaces with the greatest degree of cell stretching and bridging between neighboring microspheres. Incorporation of silicon into apatite microspheres was found to accelerate the rate and number of apatite nucleation sites formed when subjected to physiological conditions improving the interface between the microsphere scaffolds and bone forming cells, facilitating better adhesion and proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.