Abstract

This paper reports the hyperemia effect studies of drug-magnetic iron oxide nanoparticle conjugates (MION) for targeted cancer therapy. MIONs were synthesized by the method of co-precipitation using salts of iron as precursors. Chemically modified heparin derivative (heparin deoxycholate, hepDOCA) was complexed to chemotherapeutic drug, doxorubicin (DOX) and tagged to MIONs, which act as the drug-vectors. Each of these conjugates was characterized by SEM and DLS. To observe the effect of formulations, an inductor RF coil circuit was set up which ensured that the MIONs heat up in an AC magnetic field of 0.79 mT at 960 kHz. Hyperthermia treatment was performed on E.coli (DH5-α strain) cells and the growth of bacteria along with the protein released upon cell lysis was monitored. It was confirmed that HepDOCA- DOX-MION complex imparts damage to E.coli cells by the magneto-thermo-cytolysis on application of alternating magnetic field.

Highlights

  • Conventional cancer therapies employ drugs/radiation that is known to kill cancer cells effectively

  • A unique approach to tag the magnetic iron oxide nanoparticle conjugates (MION) to two drug molecules (Heparin deoxycholic acid and Doxorubicin) to obtain HepDOCADOX-MION complex was established

  • Magnetic heating apparatus was set up to ensure that the MIONs heat up in an AC magnetic field of 0.79 mT at 960 kHz

Read more

Summary

Introduction

Conventional cancer therapies employ drugs/radiation that is known to kill cancer cells effectively. They risk damage to normal tissues or incomplete eradication of the cancer. Nanotechnology offers the means to aim therapies directly and selectively at cancerous cells. With the advances in polymer nanoparticle technology, the preparation of biodegradable polymeric nanoparticles for drug delivery is gaining significant interest in recent years [1]. The Magnetic fluid Hyperthermia (MFH) is the idea of attaining cytolysis of tumor cells by thermo-cytolysis where the nanoparticles absorb the energy of the magnetic field which is released into the surrounding area as heat through magnetic “relaxation processes” to produce temperatures between 41°C and 45°C (hyperthermia), or even higher temperatures between 46°C and 70°C (thermo ablation) [1]. At temperatures above 46°C, virtually all biomolecules within the cells are affected, and the tumor cells containing the nanoparticles are directly destroyed as a result of overheating [2]

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.