Abstract

In recent years branched short-chain dicarboxylates (BSCD) such as itaconic acid gained increasing interest in both medicine and biotechnology. Their use as building blocks for plastics urges for developing microbial upcycling strategies to provide sustainable end-of-life solutions. Furthermore, many BSCD exhibit anti-bacterial properties or exert immunomodulatory effects in macrophages, indicating a medical relevance for this group of molecules. For both of these applications, a detailed understanding of the microbial metabolism of these compounds is essential. In this study, the metabolic pathway of BSCD degradation from Pseudomonas aeruginosa PAO1 was studied in detail by heterologously transferring it to Pseudomonas putida. Heterologous expression of the PA0878-0886 itaconate metabolism gene cluster enabled P. putida KT2440 to metabolize itaconate, (S)- and (R)-methylsuccinate, (S)-citramalate, and mesaconate. The functions of the so far uncharacterized genes PA0879 and PA0881 were revealed and proven to extend the substrate range of the core degradation pathway. Furthermore, the uncharacterized gene PA0880 was discovered to encode a 2-hydroxyparaconate (2-HP) lactonase that catalyzes the cleavage of the itaconate derivative 2-HP to itatartarate. Interestingly, 2-HP was found to inhibit growth of the engineered P. putida on itaconate. All in all, this study extends the substrate range of P. putida to include BSCD for bio-upcycling of high-performance polymers, and also identifies 2-HP as promising candidate for anti-microbial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call