Abstract

In this study, we have investigated for the first time the metabolism of E. coli grown on agar using 13C metabolic flux analysis (13C-MFA). To date, all 13C-MFA studies on microbes have been performed with cells grown in liquid culture. Here, we extend the scope of 13C-MFA to biological systems where cells are grown in dense microbial colonies. First, we identified new optimal 13C tracers to quantify fluxes in systems where the acetate yield cannot be easily measured. We determined that three parallel labeling experiments with the tracers [1,2–13C]glucose, [1,6–13C]glucose, and [4,5,6–13C]glucose permit precise estimation of not only intracellular fluxes, but also of the amount of acetate produced from glucose. Parallel labeling experiments were then performed with wild-type E. coli and E. coli ΔackA grown in liquid culture and on agar plates. Initial attempts to fit the labeling data from wild-type E. coli grown on agar did not produce a statistically acceptable fit. To resolve this issue, we employed the recently developed co-culture 13C-MFA approach, where two E. coli subpopulations were defined in the model that engaged in metabolite cross-feeding. The flux results identified two distinct E. coli cell populations, a dominant cell population (92% of cells) that metabolized glucose via conventional metabolic pathways and secreted a large amount of acetate (~40% of maximum theoretical yield), and a second smaller cell population (8% of cells) that consumed the secreted acetate without any glucose influx. These experimental results are in good agreement with recent theoretical simulations. Importantly, this study provides a solid foundation for future investigations of a wide range of problems involving microbial biofilms that are of great interest in biotechnology, ecology and medicine, where metabolite cross-feeding between cell populations is a core feature of the communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call