Abstract

Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) have structural similarities, interact with each others receptors (calcitonin receptor-like receptor (CLR)/receptor-activity-modifying proteins (RAMPs)) and show overlapping biological activities. AM and CGRP receptors are chiefly coupled to cAMP production. In this study, a method of primary dissociated cell culture was used to investigate the presence of AM and CGRP receptors and their effects on cAMP production in embryonic spinal cord cells. Both neuronal and non-neuronal CLR immunopositive cells were present in our model. High affinity, specific [(125)I]-AM binding sites (K(d) 79 +/- 9 pM and B(max) 571 +/- 34 fmol mg(-1) protein) were more abundant than specific [(125)I]-CGRP binding sites (K(d) 12 +/- 0.7 pM and B(max) 32 +/- 2 fmol mg(-1) protein) in embryonic spinal cord cells. Specific [(125)I]-AM binding was competed by related molecules with a ligand selectivity profile of rAM > hAM(22-52) > rCGRPalpha > CGRP(8-37) >> [r-(r(*),s(*))]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-piperidinecarboxamide (BIBN4096BS). Specific [(125)I]-CGRP binding was competed by rCGRPalpha > rAM > or = CGRP(8-37) > or = BIBN4096BS > hAM(22-52). Cellular levels of cAMP were increased by AM (pEC(50) 10.2 +/- 0.2) and less potently by rCGRPalpha (pEC(50) 8.9 +/- 0.4). rCGRPalpha-induced cAMP accumulation was effectively inhibited by CGRP(8-37) (pA(2) 7.63 +/- 0.44) and hAM(22-52) (pA(2) 6.18 +/- 0.21) while AM-stimulation of cAMP levels was inhibited by CGRP(8-37) (pA(2) 7.41+/- 0.15) and AM(22-52) (pA(2) 7.26 +/- 0.18). BIBN4096BS only antagonized the effects of CGRP (pA(2) 8.40 +/- 0.30) on cAMP accumulation. These pharmacological profiles suggest that effects of CGRP are mediated by the CGRP(1) (CLR/RAMP1) receptor in our model while those of AM are related to the activation of the AM(1) (CLR/RAMP2) receptor subtype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call