Abstract

Bombesin (BBS)/gastrin-releasing peptide (GRP) binding sites were characterized and their distribution examined in the goldfish brain and pituitary by radioligand binding and autoradiography. Binding of 125I-[Tyr 4]-BBS-14 to tissue sections was found to be saturable, reversible, time-dependent and displaceable by BBS/GRP-like peptides. Analysis of saturable equilibrium binding revealed a one-site model fit with a K d of 0.665 ± 0.267 nM. This binding site displayed high affinity for members of the BBS subfamily of peptides, including GRP10 ( K i; 0.292 ± 0.038 nM) and GRP27 ( K i; 2.034 ± 1.597 nM), but showed no affinity for the BBS 8–14 fragment. While an approximate 100-fold lower binding affinity was displayed by the binding site for neuromedin B ( K i; 61.5 ± 28.2 nM), litorin was highly effective in displacing radiolabeled BBS binding ( K i; 1.469 ± 0.427 nM). The localization of saturable and high affinity BBS/GRP binding sites in specific areas of the goldfish brain and pituitary generally revealed a similar anatomical distribution to BBS/GRP-like immunoreactive material reported previously by our laboratory. Quantitative densitometric analysis of radiolabeled BBS binding to brain nuclei and the pituitary revealed a moderate concentration of BBS/GRP binding sites in the hypothalamic feeding area, including the nucleus diffusus lobi inferioris, nucleus recessus lateralis, nucleus lateral tuberis, and nucleus anterior tuberis. Other brain nuclei known to influence the brain feeding center which contained a high density of BBS/GRP binding sites included nuclei of the dorsal and ventro-medial telencephalon, the preoptic hypothalamus, and the optic tectum. High densities of BBS/GRP binding sites were also localized in the dorsal cerebellum, and nucleus habenularis. In the pituitary, BBS/GRP binding sites were present in high concentration in the neurointermediate lobe, with a relatively lower density localized in the pars distalis. The present study further supports a role for BBS/GRP-like peptides in the regulation of feeding behavior and anterior pituitary hormone secretion in teleosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.