Abstract

Colostrum is essential for immune system development and has a protective role for infants in early life. However, the lipid compositions of human and ewe colostra have not been characterized. We hypothesized that lipidomics can be used to compare lipids in two mammalian colostra. Herein, 1004 lipids assigned to 26 subclasses were identified in both human and ewe colostra using a quantitative lipidomics approach. In total, 173 significantly different lipids (SDLs) were investigated (variable importance in projection > 1.1, fold change (FC) ≥ 2 or ≤0.5, and P < 0.0001). Four potential lipid biomarkers, namely, DG (19:0/18:0), TG (10:0/15:0/16:0), FFA (22:0), and TG (18:1/24:1/18:2), were selected from the 173 SDLs based on FC values. These different lipids were involved in 44 metabolic pathways, of which sphingolipid metabolism and glycerophospholipid metabolism were the major pathways. Our results improve the understanding of the differences between human and ewe colostra lipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.