Abstract
RNA interference (RNAi) is a powerful method of sequence-specific gene knockdown that can be mediated by DNA-based expression of short hairpin RNA (shRNA) molecules. A number of vectors for expression of shRNA have been developed with promoters for a small group of RNA polymerase III (pol III) transcripts of either mouse or human origin. To advance the use of RNAi as a tool for functional genomic research and future development of specific therapeutics in the chicken species, we have developed shRNA expression vectors featuring chicken U6 small nuclear RNA (snRNA) promoters. These sequences were identified based on the presence of promoter element sequence motifs upstream of matching snRNA sequences that are characteristic of these types of pol III promoters. To develop suitable shRNA expression vectors specifically for chicken functional genomic RNAi applications, we compared the efficiency of each of these promoters to express shRNA molecules. Promoter activity was measured in the context of RNAi by targeting and silencing the reporter gene encoding the enhanced green fluorescent protein (EGFP). Plasmids containing one of four identified chicken U6 promoters gave a similar degree of knockdown in DF-1 cells (chicken); although, there was some variability in Vero cells (monkey). Because the chicken promoters were not stronger than the benchmark mouse U6 promoter, we suggest that the promoter sequence and structure is more important in determining efficiency in vitro rather than its species origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.