Abstract

Epidendrum, one of the three largest genera of Orchidaceae, exhibits significant horticultural and ornamental value and serves as an important research model in conservation, ecology, and evolutionary biology. Given the ambiguous identification of germplasm and complex evolutionary relationships within the genus, the complete plastome of this genus (including five species) were firstly sequenced and assembled to explore their characterizations. The plastomes exhibited a typical quadripartite structure. The lengths of the plastomes ranged from 147,902 bp to 150,986 bp, with a GC content of 37.16% to 37.33%. Gene annotation revealed the presence of 78-82 protein-coding genes, 38 tRNAs, and 8 rRNAs. A total of 25-38 long repeats and 130-149 SSRs were detected. Analysis of relative synonymous codon usage (RSCU) indicated that leucine (Leu) was the most and cysteine (Cys) was the least. The consistent and robust phylogenetic relationships of Epidendrum and its closely related taxa were established using a total of 43 plastid genomes from the tribe Epidendreae. The genus Epidendrum was supported as a monophyletic group and as a sister to Cattleya. Meanwhile, four mutational hotspots (trnCGCA-petN, trnDGUC-trnYGUA, trnSGCU-trnGUCC, and rpl32-trnLUAG) were identified for further phylogenetic studies. Our analysis demonstrates the promising utility of plastomes in inferring the phylogenetic relationships of Epidendrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.