Abstract

Among all the astonishing equipment found in power transmission and distribution networks, the insulator plays a vital role by providing mechanical support and electrical protection to power system. Despite all these noteworthy facts, the breakdown of insulators owing to surface contaminants appears to be particularly fascinating in today’s scientific world. Researchers provide a plethora of methods to eradicate this problem. Amidst the methods, superhydrophobic coating for insulators which is one of the widely used method, provide better solution as it offers resistance to moisture, wetness, dust and ice. This unique property of superhydrophobic coated insulators require further investigation. Hence to achieve this purpose, preparation of eco-friendly superhydrophobic solution of PDMS (Poly di methyl siloxane) with MTMS (Methyl tri methoxy silane) composites was made and analysed. In this study superhydrophobic coatings were prepared by using sol-gel method and spray coating technique. Authors performed characterization studies by using goniometer to measure the contact angle (CA) for superhydrophobic coating on insulator surface and it was found to be from 165° to 170° and sliding angle was from 5° to 10° confirming superhydrophobic property. Fourier Transforms Infrared Spectroscopy (FTIR) analysis validates the chemical composite of the coatings. Scanning Electron Microscope (SEM) analysis was used to observe the surface morphology of coating with estimated thickness L = 2 μm.Thermogravimetric analysis (TGA) was conducted to study about thermal withstanding limit of the coating above 600 °C. Finally, in an intentional contaminated conditions based on solid layer method of IEC60507 standards and IEC 60587 standards insulation resistances were tested using a megger instrument and self-cleaning ability of coating was also determined in this research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.