Abstract

AbstractThe nature of the formation of sub-grain boundaries within sequential lateral solidification (SLS) processed thin silicon films has been examined using single crystal Si films as a pre- cursor material. Experimental details include the use of an excimer laser projection system and straight-slit beamlets to produce directionally solidified microstructures. Within the SLS processed silicon-on-insulator (SOI) films, three microstructurally distinct regions are identi-fied: (1) an initial planar defect-free area (the extent of which can depend on laser fluence and orientation); (2) a transitional area within which the sub-grain boundaries appear and propagate in a well-defined direction relative to the crystallographic orientation; and (3) a final area characterized by sub-grain boundaries aligning approximately to the scan direction, and the in-plane texture becoming more random. We discuss the results within the context of a plastic deformation model of sub-grain boundary formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.