Abstract

In this study, yttrium fluoride (YF3) and yttrium oxide (Y2O3) coatings were prepared by an atmospheric plasma spraying technique and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). YF3 powders were sprayed at various plasma spraying powers of 9, 15, and 21 kW. The XRD result indicates that the YF3 coating shows preferred orientations and was well crystallized. The XPS results revealed a strong Y–F bond on the YF3 coating surface. A porosity value analysis showed that the porosity of the YF3 coating was lower than that of the Y2O3 coating. Moreover, the dielectric strength of the YF3 coating (22.65 kV/mm) was higher than that of the Y2O3 coating (14.42 kV/mm). This confirms that the YF3 coating exhibits a breakdown voltage of 4.97 kV, which is more than 1.5 times higher than that observed for the Y2O3 coating (3.29 kV). These results indicate that the YF3 coating has better mechanical and dielectric properties than the Y2O3 coating, indicating that the YF3 coating is a very attractive novel antiplasma and corrosion-resistant material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call