Abstract

Molecular dynamics simulations were carried out on a Lennard-Jones binary mixture of rigid (fixed bond length) diatomic molecules. The translational and rotational correlation functions, and the corresponding susceptibilities, exhibit two relaxation processes: the slow structural relaxation (α dynamics) and a higher frequency secondary relaxation. The latter is a Johari-Goldstein (JG) process, by its definition of involving all parts of the molecule. It shows several properties characteristic of the JG relaxation: (1) merging with the α relaxation at high temperature; (2) a change in temperature dependence of its relaxation strength on vitrification; (3) a separation in frequency from the α peak that correlates with the breadth of the α dispersion; and (4) sensitivity to volume, pressure, and physical aging. These properties can be used to determine whether a secondary relaxation in a real material is an authentic JG process, rather than more trivial motion involving intramolecular degrees of freedom. The latter has no connection to the glass transition, whereas the JG relaxation is closely related to structural relaxation, and thus can provide new insights into the phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call