Abstract

The performance of the double inlet pulse tube (DIPT) is analyzed using a linearized model that takes account of the void volume of the regenerator. The maximum rate of refrigeration obtainable with the regenerator is determined as a function of frequency and void volume. This rate can be achieved by a DIPT with infinitely large reservoir volume. Corrections resulting from a finite reservoir volume are important only at low frequency. The coefficient of performance of a DIPT with optimized rate of refrigeration is less than half of the thermodynamic maximum. The results obtained for the DIPT are compared with corresponding results for the optimized orifice pulse tube refrigerator (OPTR). The large improvements in performance obtained with the DIPT over the OPTR are due primarily to an increase in the pulse tube pressure. The maximum rate of refrigeration decreases as the temperature at the cold side decreases. This is caused primarily from the resulting decrease in cold side flow rate. At given temperature ratio, addition of the second inlet reduces the flow rate through the regenerator over a range of intermediate frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.