Abstract
Our recent results indicated that the major proteins of bovine seminal plasma (collectively called BSP proteins) stimulate cholesterol efflux from fibroblasts and that this process shows many differences compared to the efflux induced by apolipoprotein A-I (apoA-I)-containing lipoproteins. The present study was undertaken to investigate the BSP-mediated efflux mechanism. Compared to the slow and constant rate of cholesterol efflux induced by apoA-I-containing lipoproteins, the BSP proteins stimulated a rapid efflux that gradually reached a plateau. The addition of purified BSP proteins after the establishment of the plateau resulted in a further cholesterol efflux indicating that cellular cholesterol was still available for efflux. Incubation of unlabeled fibroblast culture with the spent medium containing BSP-generated lipid ([ 3H]cholesterol) particles obtained after the establishment of the plateau did not result in any cholesterol influx. Therefore, the plateau did not correspond to an equilibrium of the radiolabel between the medium and the cells but rather to a saturation of the efflux particles with cholesterol. Numerous studies have indicated that the cholesterol efflux induced by apoA-I-containing lipoproteins involves cell-surface receptor, caveolae and intracellular cholesterol mobilization. Therefore, we investigated these characteristics for the BSP-mediated cholesterol efflux. Binding of BSP proteins to cells (evaluated by immunoblotting) reached saturation rapidly and remained constant thereafter. However, after several washings the cell-bound BSP proteins were unable to promote significant cholesterol efflux. Both results indicate no correlation of cholesterol efflux with cell binding. Moreover, in comparison to apoA-I-mediated cholesterol efflux, BSP-mediated efflux was not abolished at temperatures below 22°C indicating that the BSP-induced cholesterol efflux does not involve intracellular cholesterol mobilization. High-density lipoprotein- and apoA-I-mediated cholesterol efflux was inhibited by preincubating fibroblasts with progesterone, whereas the cholesterol efflux by BSP proteins was not, indicating that cell-surface caveolae do not participate in BSP-mediated cholesterol efflux. Our results indicate that the mechanism of cholesterol efflux by BSP proteins is unidirectional and is strikingly different from that mediated by apoA-I-containing lipoproteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.