Abstract
In this work, a (2 + 1)-dimensional generalized Nizhnik–Novikov–Veselov (GNNV) equation, which can be reduced to several integrable equations, is under investigation. By virtue of Bell’s polynomials, an effective and straightforward way is presented to succinctly construct its two bilinear forms. Furthermore, based on the bilinear formalism and the extended homoclinic test, the breather wave solution, rogue-wave solution and solitary-wave solution of the equation are well constructed. The results can be used to enrich the dynamical behavior of the (2 + 1)-dimensional nonlinear wave fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.