Abstract

Under investigation in this paper is a (3[Formula: see text]+[Formula: see text]1)-dimensional generalized Kadomtsev–Petviashvili equation, which describes the long water waves and small-amplitude surface waves with the weak nonlinearity, weak dispersion and weak perturbation in a fluid. Via the Hirota method and symbolic computation, the lump wave, breather wave and rogue wave solutions are obtained. We graphically present the lump waves under the influence of the dispersion effect, nonlinearity effect, disturbed wave velocity effects and perturbed effects: Decreasing value of the dispersion effect can lead to the range of the lump wave decreases, but has no effect on the amplitude. When the value of the nonlinearity effect or disturbed wave velocity effects increases respectively, lump wave’s amplitude decreases but lump wave’s location keeps unchanged. Amplitudes of the lump waves are independent of the perturbed effects. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity. When the value of the dispersion effect decreases, range of the rogue wave increases. When the value of the nonlinearity effect or disturbed wave velocity effects decreases respectively, rogue wave’s amplitude decreases. Value changes of the perturbed effects cannot influence the rogue wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call