Abstract

The general characteristics of surfaces machined with abrasive-waterjets (AWJs) are discussed in terms of surface texture and surface integrity. Data are presented from several studies involving different machining operations, including cutting, milling, turning, and drilling, and various advanced materials. The effects of AWJ parameters on surface texture effects, such as waviness, kerf taper, and burr height, in thin sheet metals typically used in the aerospace industry are presented and discussed. Other surface texture parameters, including surface finish and lay, are also addressed for selected machining applications such as milling and turning. Abrasive particle size is found to be the dominant parameter affecting the surface finish. The surface integrity effects are defined as particle deposition, delamination, gouging, microstructural changes, cracking, chipping, work hardening, and heataffected zones. Particle deposition occurs in the machining of ductile materials, but deposited particles can easily be removed by cleaning. Minor work hardening may result but can be totally eliminated if the dominant material removal mechanism is the cutting wear mode, which prevails under certain jet and traverse conditions. Thus, although the machining of advanced materials with AWJs may result in minor but controllable surface texture effects, it does not generally affect the integrity of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.