Abstract
We demonstrate theoretically the characteristics of surface plasmon polaritons (SPPs) with an asymmetric chiral-metal-chiral (CMC) waveguide structure, under realistic frequency dependencies of the permittivity and chirality parameters. Generalized dispersion relations are derived which can be applied to the nonchiral SPPs. We find that the existence of cutoffs in different modes for the CMC structures may facilitate the design of mode-selective surface plasmon waveguides. CMC-SPPs also exhibit an interesting dependence of the polarization on the chiral strength. These novel characteristics of CMC-SPPs provide new possibilities for the design of more compact nanophotonic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have