Abstract

Silkworm (Bombyx mori), a model Lepidoptera insect, is an important economic insect. Its silk gland is the important organ for silk protein synthesis and secretion. Phoxim exposure causes deficient cocooning of silkworm and has become one of the major negative factors for the silk industry. To study the impact of phoxim exposure on silk gland, using gene chip technology, we examined differentially expressed genes in silk gland after silkworms were exposed to phoxim (4.0μg/mL) for 24h. Functional annotation, classification and KEGG signaling pathway analysis were performed. The results showed that out of 3206 genes detected in silk gland after phoxim exposure, 270 were differentially expressed significantly, including 249 up-regulated genes and 21 down-regulated genes. These differentially expressed genes related to apoptosis, detoxification and protein degradation were selected. Using qRT-PCR, the expression levels of 9 genes involved in apoptosis, detoxification and protein degradation were validated. In addition, the expression profiles of three related fibroin synthesis genes (Fib-H, Fib-L and P25) were analyzed. Our results showed that phoxim exposure induced apoptosis of silk gland cells and inhibition of fibroin synthesis. This may be the cause of deficient silkworm cocooning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.