Abstract

Silkworm (Bombyx mori) is an important economic insect and a model species for Lepidopteran. Each year, O,O-diethyl O-(alpha-cyanobenzylideneamino) phosphorothioate (phoxim) pesticide poisoning in China results in huge economic losses in sericulture. Silkworm fat body is the main organ for nutrient storage, energy supply, intermediary metabolism, and detoxification. Microarray analysis of silkworm Cytochrome P450 detoxification enzyme genes revealed that all tested P450 4 (CYP4) family genes are expressed in the fat body. Quantitative Real-time PCR (QRT-PCR) was used to detect the expression of CYP4 family genes in silkworm fat body 0, 24, 48, and 72 h after phoxim exposure. The expression levels of silkworm molting hormone synthesis-related genes started to change 24 h after phoxim exposure, with those of CYP302A1, CYP306A1, and CYP314A1 being elevated by 1.38-, 1.33-, and 2.10-fold, respectively. The CYP18A1 gene that participates in steroid hormone inactivation and the CYP15C1 gene that participates in the epoxidation during the synthesis of juvenile hormone (JH) from methyl farnesoate (MF) were increased by 3.85- and 7.82-fold, respectively. Phylogenetic analysis indicated that these endogenous hormone metabolism-related genes belong to CYP mito clan and clan 2, and that phoxim exposure may affect silkworm development and metamorphosis. The CYP4, CYP6, and CYP9 families all showed some degrees of increases in gene expression; among them, CYP49A1, CYP4L6, CYP6AB4, CYP9G3, CYP9A19, and CYP9A22's transcription levels were significantly upregulated to 12.77-, 2.64-, 2.42-, 4.06-, 3.32-, and 2.98-fold, respectively, of the control levels. In the fat body, CYP49A1, CYP6AB4, CYP9A19, and CYP9A22 were constantly expressed at high levels after 24, 48, and 72 h of phoxim treatments; according to phylogenetic analysis, these genes belong to detoxification-related clan 3 and clan 4 CYP families. These genes may participate in the metabolism of phoxim in silkworm fat body. The results obtained in this study provide a basis for future in-depth investigations of insect P450 family genes in metabolic detoxification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call