Abstract

This work is concerned with assessing the influence of natural pozzolan on the physical, mechanical and durability properties of blended Portland cement pastes. The results indicate that final setting times of natural pozzolan blended Portland cement pastes range from 4 to about 5 h. Naphthalene-type superplasticizer tends to retard the hydration process of plain and natural pozzolan blended Portland cement pastes. These blends show slightly higher setting times than those without superplasticizer. The use of superplasticizer is found to have a significant influence on the workability. At a lower level of Portland cement replacement by natural pozzolan, the addition of 1% superplasticizer by weight of blended Portland cement leads to a significant decrease in the water to Portland cement plus natural pozzolan ratio for a given workability. However, for the blended Portland cement with a high proportion of natural pozzolan, the increase in water content causes the porosity to increase with an accompanying decrease in compressive strengths. The variations in composition and cure time are found to provide significant changes in compressive strength. Depending on these parameters, the variation in compressive strength can be estimated by using the equation, σ= σ 0/[1+exp( a+ bp+ cp 2)] n , where σ is the compressive strength of natural pozzolan blended Portland cement paste at a given cure time and natural pozzolan replacement level (MPa); σ 0 is the compressive strength of plain Portland cement pastes with or without superplasticizer at a given cure time (MPa); p is the natural pozzolan replacement level (%); a, b, c, n are the empirical constants to be determined. The blend with a composition of 80% Portland cement and 20% natural pozzolan and 1% superplasticizer provides superior strength and durability characteristics in comparison to the counterparts without superplasticizer and to the blends with a high proportion of natural pozzolan. At high contents of natural pozzolan, the resistance to freezing and thawing is found to be impaired. Moreover, these blended cements do not provide high durability performance against sulfate attack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call