Abstract
An Open-Graded Friction Course (OGFC) presents a rough surface and a porous structure and provides skid resistance under wet conditions, differing from that of a dense graded mixture. This study explored the distribution of surface macrotexture with depth in OGFC. Using cross-sectional images and semantic image segmentation techniques, the internal structure, porosity, and void size distribution were analyzed to assess the effectiveness of rainfall drainage. Skid resistance was evaluated with a British Pendulum Tester, focusing on the influence of surface macrotexture and internal macrostructure, particularly with regard to contact depth. Results show that finer gradations increase surface roughness peaks, which are concentrated near the top surface. In contrast, coarser mixtures exhibit a greater effective contact depth and more peaks with higher curvature. Finer gradations also result in lower porosity, greater void dispersion, and smaller average void diameters. During heavy rainfall, OGFC-13 exhibits the highest friction coefficient due to its effective contact, surface roughness, and internal voids, which facilitate water expulsion. This research provides insights into the skid resistance mechanism of OGFC in wet conditions and offers practical guidance for selecting the optimal gradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.