Abstract

Neutrophils play a critical role in ventilation-induced lung injury. This study was aimed to investigate the characteristics of neutrophils influx in lungs induced by high tidal volume ventilation. Anaesthetized rats were randomly divided into low tidal volume ventilation group (Vt: 7 mL/kg, LV group) or high tidal volume ventilation group (Vt: 42 mL/kg, HV group) (n=40 in each). Rats in each group were ventilated for 0, 60, 90, 120 and 240 min. The wet/dry lung weight ratio (W/D) was measured. The levels of macrophage inflammatory protein-2 (MIP-2) and tumor necrosis factor-α (TNF-α), and the activity of myeloperoxidase (MPO) were detected by enzyme-linked immunosorbent assay (ELISA). The number of neutrophils in bronchoalveolar lavage fluid (BALF) was counted after Wright's staining, and the percentage of netrophils in lung tissues calculated. Histopatholgical examination was used to observe the changes of lung tissues after different ventilations. The results showed that the W/D weight ratio was increased, and the levels of MIP-2 and TNF-α significantly enhanced in HV group at 90, 120 and 240 min. Neutrophils in BALF and the neutrophil percentage in lung tissues were also elevated at 120 and 240 min, which coincided with the enhanced activity of MPO in HV group. The lung injury was significantly related with the ventilation time and the infiltration of neutrophils in lungs in HV group. In conclusion, in ventilation-induced lung injury, neutrophil infiltration is present in a time-dependent manner and associated with the aggravated lung injury. Pulmonary structural damage may be the main reason for ventilation-induced lung injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.