Abstract

Site-selective uptake and specific biodistribution of chemotherapeutic drugs are essential prerequisites for targeted cancer therapy. Especially, antibody and peptide conjugated drugs have been attempted as localized therapeutic agents. However, the characteristics of drug conjugated nanosystems are less explored, which are limited with their toxicity, low therapeutic efficacy, complicated synthesis, and high costs. Herein, we report a biocompatible (about 95%) molecularly engineered anticancer drug conjugated nanomicelles (∼200 nm in size) for site-selective CD44 overexpressed cancer cell rupture and tumor growth inhibition. Microscopic analysis demonstrates the distinct visualization of organic-organic interfaces (∼5 nm), which are corroborated with spectroscopic measurements confirmed the conjugation of niclosamide drug with hyaluronic acid (NIC-HA). Uniformly distributed hemocompatible (about 99%) organic nanomicelles exhibit the cellular membrane and cytoplasmic targeting with significant cellular rupture (IC50 of 4 μM for MDA MB 231 cells) indicating their inherent targeting ability for cancer cells and cancer stem cells. An inclusive in vitro and in vivo analysis for targeted antitumor activity (HT1080 tumor xenograft model) of NIC-HA nanoconjugates (∼24.6% loading) exhibited promising cancer cell death and tumor growth inhibition (60%, p < 0.05) due to STAT-3 signaling pathway inhibition and induction of apoptosis in CD44-positive triple negative breast cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call