Abstract

The propagation of millimeter waves in metallic waveguides inhomogeneously filled with dielectric materials having surface plasma layers is characterized. The modal phase shift and attenuation of a 94-GHz wave are computed for a 10-µm plasma layer thickness as a function of carrier density. In the unexcited state, 90 percent of the millimeter-wave power is confined to the interior air region of the guide, while the remaining 10 percent propagates in the semiconductor insert. In the excited state at high injection levels, over 99 percent of the wave power propagates in the air region. Consequently, in this state, the waveguide will have a very low loss. A resonant cavity using the waveguide configuration shown to have a wide tuning range and high cavity Q.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.