Abstract

Although periodontal ligament-derived mesenchymal stem cells (PDL-MSCs) have been recognized as the best MSC choice for periodontal regeneration, using PDL-MSCs requires tooth extraction for cell isolation. The supracrestal gingival (SG) connective tissue is a part of the gingiva which is located close to the PDL. SG-MSCs might have similar characteristic to the PDL-MSCs and serve as a good MSC candidate for periodontal regeneration. This study aimed to investigate and compare the characteristics of human MSCs isolated from SG tissue (hSG-MSCs), marginal gingival tissue (hMG-MSCs), and PDL (hPDL-MSCs) in terms of MSCs properties and differential gene expression profile. Human periodontal tissue from five healthy subjects, including SG, MG, and PDL, was harvested. The primary cells of the hSG-MSCs, hMG-MSCs, and hPDL-MSCs were isolated and expanded to assess MSCs markers by flow cytometry, colony-forming ability, differentiation potential, RNA sequencing, and real-time polymerase chain reaction (PCR). Of the three cell types, the hSG-MSCs demonstrated the highest colony-forming ability. The number of alizarin red S positive colonies produced by the hSG-MSCs was higher than the hMG-MSCs but lower than the hPDL-MSCs. RNA sequencing revealed that the hSG-MSCs had a more similar gene expression profile to the hPDL-MSCs than the hMG-MSCs. Pathway enrichment analysis found no significant differences in the differentially expressed genes between the hSG-MSCs and hPDL-MSCs; however, there were significantly enriched pathways between the hPDL-MSCs and hMG-MSCs for the extracellular matrix (ECM) organization and ECM-receptor interaction pathways. This study demonstrated a close relationship between hSG-MSCs and hPDL-MSCs. hSG-MSCs could be a potential MSC source for periodontal tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call