Abstract

Handling missing values in univariate time series analysis poses a challenge, potentially leading to inaccurate conclusions, especially with frequently occurring consecutive missing values. Machine Learning-based Univariate Time Series Imputation (MLBUI) methods, utilizing Random Forest Regression (RFR) and Support Vector Regression (SVR), aim to address this challenge. Considering factors such as time series patterns, missing data patterns, and volume, this study explores the performance of MLBUI in simulated Autoregressive Integrated Moving Average (ARIMA) datasets. Various missing data scenarios (6%, 10%, and 14%) and model scenarios (Autoregressive (AR) models: AR(1) and AR(2); Moving Average (MA) models: MA(1) and MA(2); Autoregressive Moving Average (ARMA) models: ARMA(1,1) and ARMA(2,2); and Autoregressive Integrated Moving Average (ARIMA) models: ARIMA(1,1,1) and ARIMA(1,2,1)) with different standard deviations (0.5, 1, and 2) were examined. Five comparative methods were also used in this research, including Kalman StructTS, Kalman Auto-ARIMA, Spline Interpolation, Stine Interpolation, and Moving Average. The research findings indicate that MLBUI performs exceptionally well in imputing successive missing values. The results of this study indicate that the performance of MLBUI in imputing consecutive missing values, based on MAPE, yielded values of less than 10% across all scenarios used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.